STAT3
Gene Ontology Biological Process
- JAK-STAT cascade [TAS]
- JAK-STAT cascade involved in growth hormone signaling pathway [IDA, ISS, TAS]
- astrocyte differentiation [ISS]
- cellular component movement [TAS]
- cellular response to hormone stimulus [IDA]
- cytokine-mediated signaling pathway [NAS]
- eating behavior [ISS]
- eye photoreceptor cell differentiation [ISS]
- glucose homeostasis [ISS]
- growth hormone receptor signaling pathway [IDA]
- interleukin-6-mediated signaling pathway [IDA]
- intracellular receptor signaling pathway [IDA]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- nervous system development [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphorylation [ISS]
- positive regulation of Notch signaling pathway [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [ISS]
- protein import into nucleus [IDA]
- radial glial cell differentiation [ISS]
- regulation of transcription from RNA polymerase II promoter [ISS]
- regulation of transcription, DNA-templated [IDA]
- response to estradiol [IDA]
- sexual reproduction [ISS]
- signal transduction [TAS]
- temperature homeostasis [ISS]
Gene Ontology Molecular Function- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
JUN
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- SMAD protein import into nucleus [IDA]
- SMAD protein signal transduction [IDA]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation by host of viral transcription [IDA]
- negative regulation of DNA binding [IDA]
- negative regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- positive regulation by host of viral transcription [IDA]
- positive regulation of Rho GTPase activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IC, IDA]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
- transforming growth factor beta receptor signaling pathway [IDA]
Gene Ontology Molecular Function- DNA binding [TAS]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IC, IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IC]
- Rho GTPase activator activity [IDA]
- cAMP response element binding [IDA]
- enzyme binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IC]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [TAS]
- R-SMAD binding [IPI]
- RNA polymerase II activating transcription factor binding [IPI]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IC, IDA]
- RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription [IC]
- Rho GTPase activator activity [IDA]
- cAMP response element binding [IDA]
- enzyme binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IC]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation.
Independent but closely spaced DNA binding sites for Stat3 and c-Jun are required for maximal enhancer function in a number of genes, including the gene encoding the interleukin-6 (IL-6)-induced acute-phase response protein, alpha(2)-macroglobulin. In addition, a physical interaction of Stat3 with c-Jun, based on yeast two-hybrid interaction experiments, has been reported. Here we confirm the existence of an interaction between ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| STAT3 JUN | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 3829425 | |
| JUN STAT3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | 3829427 | |
| JUN STAT3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| STAT3 JUN | Co-localization Co-localization Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments. | Low | - | BioGRID | 3829431 | |
| STAT3 JUN | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID