NOTCH1
Gene Ontology Biological Process
- Notch receptor processing [TAS]
- Notch signaling involved in heart development [IMP]
- Notch signaling pathway [IMP, TAS]
- aortic valve morphogenesis [IMP]
- arterial endothelial cell differentiation [ISS]
- atrioventricular valve morphogenesis [ISS]
- cardiac atrium morphogenesis [ISS]
- cardiac chamber formation [ISS]
- cardiac epithelial to mesenchymal transition [ISS]
- cardiac left ventricle morphogenesis [ISS]
- cardiac muscle tissue morphogenesis [ISS]
- cardiac right atrium morphogenesis [ISS]
- cardiac septum morphogenesis [ISS]
- cardiac vascular smooth muscle cell development [ISS]
- cardiac ventricle morphogenesis [ISS]
- cell migration involved in endocardial cushion formation [ISS]
- cellular response to follicle-stimulating hormone stimulus [IDA]
- cellular response to vascular endothelial growth factor stimulus [IDA]
- cilium morphogenesis [ISS]
- coronary artery morphogenesis [ISS]
- coronary vein morphogenesis [ISS]
- determination of left/right symmetry [ISS]
- endocardial cell differentiation [ISS]
- endocardial cushion morphogenesis [ISS]
- endocardium development [ISS]
- endocardium morphogenesis [ISS]
- epithelial to mesenchymal transition [ISS]
- epithelial to mesenchymal transition involved in endocardial cushion formation [ISS]
- gene expression [TAS]
- growth involved in heart morphogenesis [ISS]
- heart development [IMP]
- heart looping [ISS]
- heart trabecula morphogenesis [ISS]
- immune response [NAS]
- mesenchymal cell development [ISS]
- mitral valve formation [IMP]
- negative regulation of BMP signaling pathway [ISS]
- negative regulation of anoikis [IMP]
- negative regulation of catalytic activity [ISS]
- negative regulation of cell migration involved in sprouting angiogenesis [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of cell-substrate adhesion [IDA]
- negative regulation of endothelial cell chemotaxis [IDA]
- negative regulation of glial cell proliferation [ISS]
- negative regulation of myoblast differentiation [IMP]
- negative regulation of myotube differentiation [ISS]
- negative regulation of neurogenesis [ISS]
- negative regulation of oligodendrocyte differentiation [ISS]
- negative regulation of ossification [ISS]
- negative regulation of osteoblast differentiation [ISS]
- negative regulation of pro-B cell differentiation [ISS]
- negative regulation of stem cell differentiation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [ISS]
- negative regulation of transcription, DNA-templated [ISS]
- neuronal stem cell maintenance [IEP]
- pericardium morphogenesis [ISS]
- positive regulation of BMP signaling pathway [ISS]
- positive regulation of JAK-STAT cascade [ISS]
- positive regulation of astrocyte differentiation [ISS]
- positive regulation of cardiac muscle cell proliferation [ISS]
- positive regulation of cell migration [ISS]
- positive regulation of cell proliferation [IDA, IMP]
- positive regulation of epithelial to mesenchymal transition [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, ISS]
- positive regulation of transcription from RNA polymerase II promoter in response to hypoxia [ISS]
- positive regulation of transcription of Notch receptor target [ISS]
- positive regulation of transcription, DNA-templated [ISS]
- pulmonary valve morphogenesis [IMP]
- regulation of extracellular matrix assembly [ISS]
- regulation of transcription from RNA polymerase II promoter involved in myocardial precursor cell differentiation [ISS]
- regulation of transcription, DNA-templated [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- tube formation [IMP]
- vasculogenesis involved in coronary vascular morphogenesis [ISS]
- venous endothelial cell differentiation [ISS]
- ventricular septum morphogenesis [IMP]
- ventricular trabecula myocardium morphogenesis [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
NFKB1
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular response to interleukin-1 [IEP]
- cellular response to interleukin-6 [IMP]
- cellular response to lipopolysaccharide [IMP]
- cellular response to mechanical stimulus [IEP]
- cellular response to nicotine [IMP]
- cellular response to peptide hormone stimulus [IMP]
- inflammatory response [TAS]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of calcidiol 1-monooxygenase activity [IDA]
- negative regulation of cellular protein metabolic process [IC]
- negative regulation of cholesterol transport [IC]
- negative regulation of transcription from RNA polymerase II promoter [IC, IGI, IMP]
- negative regulation of vitamin D biosynthetic process [IC]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of NF-kappaB transcription factor activity [TAS]
- positive regulation of canonical Wnt signaling pathway [IMP]
- positive regulation of hyaluronan biosynthetic process [IDA]
- positive regulation of lipid storage [IC]
- positive regulation of macrophage derived foam cell differentiation [IC]
- positive regulation of miRNA metabolic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA, IMP, NAS]
- positive regulation of type I interferon production [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- protein binding [IPI]
- regulatory region DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IDA]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- protein binding [IPI]
- regulatory region DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IDA]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [IDA]
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Human Notch-1 inhibits NF-kappa B activity in the nucleus through a direct interaction involving a novel domain.
Notch participates in diverse cell fate decisions throughout embryonic development and postnatal life. Members of the NF-kappaB/Rel family of transcription factors are involved in the regulation of a variety of genes important for immune function. The biological activity of the NF-kappaB transcription factors is controlled by IkappaB proteins. Our previous work demonstrated that an intracellular, constitutively active form of human ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| NFKB1 NOTCH1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| NOTCH1 NFKB1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID