BAIT

SLD5

CDC105, YDR489W
Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p); complex is localized to DNA replication origins and implicated in assembly of the DNA replication machinery
GO Process (2)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

DPB3

L000000520, YBR278W
Third-largest subunit of DNA polymerase II (DNA polymerase epsilon); required to maintain fidelity of chromosomal replication and also for inheritance of telomeric silencing; stabilizes the interaction of Pol epsilon with primer-template DNA, positively affecting the processivity of the polymerase and exonuclease activities of Pol epsilon; mRNA abundance peaks at the G1/S boundary of the cell cycle; DPB3 has a paralog, DLS1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability.

Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G

DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome ... [more]

Cell Rep Dec. 18, 2019; 30(7);2094-2105.e9 [Pubmed: 32075754]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SLD5 DPB3
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
SLD5 DPB3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.706BioGRID
1973827
DPB3 SLD5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4191BioGRID
2030197

Curated By

  • BioGRID