BAIT

SEN1

CIK3, NRD2, putative DNA/RNA helicase SEN1, L000001862, YLR430W
Presumed helicase and subunit of the Nrd1 complex (Nrd1p-Nab3p-Sen1p); complex interacts with the exosome to mediate 3' end formation of some mRNAs, snRNAs, snoRNAs, and CUTs; has a separate role in coordinating DNA replication with transcription, by associating with moving replication forks and preventing errors that occur when forks encounter transcribed regions; homolog of Senataxin, which is implicated in Ataxia-Oculomotor Apraxia 2 and a dominant form of ALS
Saccharomyces cerevisiae (S288c)
PREY

MRC1

YCL060C, chromatin-modulating protein MRC1, YCL061C
S-phase checkpoint protein required for DNA replication; couples DNA helicase and DNA polymerase; interacts with and stabilizes Pol2p at stalled replication forks during stress, where it forms a pausing complex with Tof1p and is phosphorylated by Mec1p; with Hog1p defines a novel S-phase checkpoint that permits eukaryotic cells to prevent conflicts between DNA replication and transcription; protects uncapped telomeres; degradation via Dia2p help cells resume cell cycle
Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability.

Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G

DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome ... [more]

Cell Rep Dec. 18, 2019; 30(7);2094-2105.e9 [Pubmed: 32075754]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEN1 MRC1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
MRC1 SEN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1206BioGRID
2030964
SEN1 MRC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2989BioGRID
2003600
SEN1 MRC1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2599968
MRC1 SEN1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
3014450
SEN1 MRC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
857643
SEN1 MRC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2599970
SEN1 MRC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3339900

Curated By

  • BioGRID