BAIT
FZR1
CDC20C, CDH1, FZR, FZR2, HCDH, HCDH1
fizzy/cell division cycle 20 related 1 (Drosophila)
GO Process (9)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
- G2 DNA damage checkpoint [IDA]
- activation of anaphase-promoting complex activity [IDA]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA, TAS]
- mitotic cell cycle [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of protein catabolic process [IGI]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein K11-linked ubiquitination [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
RPL10A
CSA19, Csa-19, L10A, NEDD6
ribosomal protein L10a
GO Process (14)
GO Function (3)
GO Component (8)
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- anatomical structure morphogenesis [TAS]
- cellular protein metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- translation [NAS, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative ... [more]
PLoS Biol Dec. 01, 2019; 18(12);e3000975 [Pubmed: 33306668]
Throughput
- Low Throughput
Curated By
- BioGRID