BAIT

TUB2

ARM10, SHE8, beta-tubulin, L000002388, YFL037W
Beta-tubulin; associates with alpha-tubulin (Tub1p and Tub3p) to form tubulin dimer, which polymerizes to form microtubules; mutation in human ortholog is associated with congenital fibrosis of the extraocular muscles (CFEOM) with polymicrogyria
Saccharomyces cerevisiae (S288c)
PREY

MCM21

CTF5, L000003998, YDR318W
Component of the kinetochore sub-complex COMA; COMA (Ctf19p, Okp1p, Mcm21p, Ame1p) bridges kinetochore subunits in contact with centromeric DNA with subunits bound to microtubules during kinetochore assembly; involved in minichromosome maintenance; modified by sumoylation; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-O and fission yeast mal2
GO Process (2)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Interphase Microtubules Safeguard Mitotic Progression by Suppressing an Aurora B-Dependent Arrest Induced by DNA Replication Stress.

Laflamme G, Sim S, Leary A, Pascariu M, Vogel J, D'Amours D

The segregation of chromosomes is a critical step during cell division. This process is driven by the elongation of spindle microtubules and is tightly regulated by checkpoint mechanisms. It is unknown whether microtubules affect checkpoint responses as passive contributors or active regulators of the process. We show here that interphase microtubules are essential to temporally restrict the effects of DNA ... [more]

Cell Rep Dec. 12, 2018; 26(11);2875-2889.e3 [Pubmed: 30865880]

Throughput

  • Low Throughput

Ontology Terms

  • inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TUB2 MCM21
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
114265

Curated By

  • BioGRID