BAIT

SBA1

CST18, L000004284, L000002999, S000029122, YKL117W
Co-chaperone that binds and regulates Hsp90 family chaperones; plays a role in determining prion variants; important for pp60v-src activity in yeast; homologous to the mammalian p23 proteins, and like p23 can regulate telomerase activity; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

STI1

Hsp90 cochaperone STI1, L000002129, YOR027W
Hsp90 cochaperone; interacts with the Ssa group of the cytosolic Hsp70 chaperones and activates Ssa1p ATPase activity; interacts with Hsp90 chaperones and inhibits their ATPase activity; homolog of mammalian Hop
GO Process (1)
GO Function (4)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90? Function in Yeast.

Reidy M, Masison DC

Hsp90 is a highly conserved molecular chaperone important for the activity of many client proteins. Hsp90 has an N-terminal ATPase domain (N), a middle domain (M) that interacts with clients and a C-terminal dimerization domain (C). "Closing" of dimers around clients is regulated by ATP binding, co-chaperones, and post-translational modifications. ATP hydrolysis coincides with release of mature client and resetting ... [more]

J Mol Biol Dec. 24, 2019; 432(16);4673-4689 [Pubmed: 32565117]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: protein activity (APO:0000022)

Additional Notes

  • Sti1 is required for rescue of hHsp90alpha function by depleting Sba1

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SBA1 STI1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3017867
SBA1 STI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
160719
STI1 SBA1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
164192

Curated By

  • BioGRID