MAPK9
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- JNK cascade [IDA, TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- innate immune response [TAS]
- positive regulation of gene expression [IMP]
- positive regulation of macrophage derived foam cell differentiation [IMP]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- response to stress [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytosol [TAS]
- nucleoplasm [TAS]
JUNB
Gene Ontology Biological Process
- gene expression [TAS]
- negative regulation of nucleic acid-templated transcription [TAS]
- positive regulation of transcription from RNA polymerase II promoter [TAS]
- regulation of transcription from RNA polymerase II promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- chromatin [TAS]
- nucleoplasm [IDA, TAS]
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions.
Structurally related serine/threonine kinases recognize similar phosphoacceptor peptides in vitro yet in vivo, they phosphorylate distinct substrates. To understand the basis for this specificity, we studied the interaction between the Jun kinases (JNKs) and Jun proteins. JNKs phosphorylate c-Jun very efficiently, JunD less efficiently, but they do not phosphorylate JunB. Effective JNK substrates require a separate docking site and specificity-conferring ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MAPK9 JUNB | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 795751 |
Curated By
- BioGRID