BAIT
NAA40
NAT11, PATT1
N(alpha)-acetyltransferase 40, NatD catalytic subunit
GO Process (0)
GO Function (0)
GO Component (0)
Homo sapiens
PREY
DDX3X
CAP-Rf, DBX, DDX14, DDX3, HLP2
DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked
GO Process (29)
GO Function (14)
GO Component (6)
Gene Ontology Biological Process
- ATP catabolic process [IDA, TAS]
- DNA duplex unwinding [IDA]
- RNA secondary structure unwinding [IDA]
- cellular response to arsenic-containing substance [IDA]
- cellular response to osmotic stress [IDA]
- chromosome segregation [IMP]
- extrinsic apoptotic signaling pathway via death domain receptors [IMP]
- innate immune response [IMP]
- intracellular signal transduction [IDA]
- intrinsic apoptotic signaling pathway [IMP]
- mature ribosome assembly [IMP]
- negative regulation of apoptotic process [IMP]
- negative regulation of cell growth [IDA]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- negative regulation of intrinsic apoptotic signaling pathway [IMP]
- negative regulation of protein complex assembly [IDA]
- negative regulation of translation [IMP]
- positive regulation of G1/S transition of mitotic cell cycle [IMP]
- positive regulation of apoptotic process [IMP]
- positive regulation of cell growth [IMP]
- positive regulation of chemokine (C-C motif) ligand 5 production [TAS]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- positive regulation of interferon-beta production [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of translation [IDA]
- positive regulation of translational initiation [IMP]
- positive regulation of viral genome replication [IMP]
- response to virus [IDA]
- stress granule assembly [IDA]
Gene Ontology Molecular Function- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
N-Terminal Acetyltransferase Naa40p Whereabouts Put into N-Terminal Proteoform Perspective.
The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 ... [more]
Int J Mol Sci Apr. 01, 2021; 22(7); [Pubmed: 33916271]
Throughput
- High Throughput
Additional Notes
- BioID
- Hit genes preferrentially interact with hNaa40L proteoform
Curated By
- BioGRID