BAIT

GRS1

glycine--tRNA ligase, L000000738, L000000731, YBR121C
Cytoplasmic and mitochondrial glycyl-tRNA synthase; ligates glycine to the cognate anticodon-bearing tRNA; transcription termination factor that may interact with the 3'-end of pre-mRNA to promote 3'-end formation; GRS1 has a paralog, GRS2, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

NUP170

NLE3, L000001256, L000003140, YBL079W
Subunit of the inner ring of the nuclear pore complex (NPC); contributes to NPC assembly and nucleocytoplasmic transport; both Nup170p and NUP157p are similar to human Nup155p; NUP170 has a paralog, NUP157, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing.

Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ

We used a quantitative, high-density genetic interaction map, or E-MAP (Epistatic MiniArray Profile), to interrogate the relationships within and between RNA-processing pathways. Due to their complexity and the essential roles of many of the components, these pathways have been difficult to functionally dissect. Here, we report the results for 107,155 individual interactions involving 552 mutations, 166 of which are hypomorphic ... [more]

Mol. Cell Dec. 05, 2008; 32(5);735-46 [Pubmed: 19061648]

Quantitative Score

  • -2.581959 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NUP170 GRS1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
GRS1 NUP170
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1811BioGRID
1961295

Curated By

  • BioGRID