GPR114
Gene Ontology Biological Process
ACVR1B
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IDA]
- activin receptor signaling pathway [IDA, IMP]
- extrinsic apoptotic signaling pathway [IMP]
- negative regulation of cell growth [IDA]
- nodal signaling pathway [IGI]
- peptidyl-threonine phosphorylation [IDA]
- positive regulation of activin receptor signaling pathway [IDA]
- positive regulation of erythrocyte differentiation [IDA]
- positive regulation of trophoblast cell migration [IDA]
- protein autophosphorylation [IDA]
- protein phosphorylation [IDA]
- regulation of transcription, DNA-templated [IDA]
- signal transduction [IDA]
- transmembrane receptor protein serine/threonine kinase signaling pathway [TAS]
Gene Ontology Molecular Function- ATP binding [IDA]
- SMAD binding [IDA]
- activin binding [IDA]
- activin receptor activity, type I [IDA, TAS]
- activin-activated receptor activity [IDA]
- growth factor binding [IPI]
- inhibin binding [IPI]
- protein binding [IPI]
- protein serine/threonine kinase activity [EXP, IDA]
- transmembrane receptor protein serine/threonine kinase activity [NAS]
- ubiquitin protein ligase binding [NAS]
- ATP binding [IDA]
- SMAD binding [IDA]
- activin binding [IDA]
- activin receptor activity, type I [IDA, TAS]
- activin-activated receptor activity [IDA]
- growth factor binding [IPI]
- inhibin binding [IPI]
- protein binding [IPI]
- protein serine/threonine kinase activity [EXP, IDA]
- transmembrane receptor protein serine/threonine kinase activity [NAS]
- ubiquitin protein ligase binding [NAS]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.
Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 ... [more]
Quantitative Score
- 0.97583128 [compPASS Score]
Throughput
- High Throughput
Additional Notes
- BioPlex 3.0 HEK 293T cells CompPASS score = 0.97583128, threshold = 0.75. Quantitative scores are calculated by CompPASS-Plus (Huttlin et al. Cell 2015, PMID: 26186194). The 0.75 threshold represents the top 2% of scores in HEK293T.
- This data may be re-scored from BioPlex 1.0 (PMID: 26186194) and BioPlex 2.0 (PMID: 28514442). Only scores from within the same cell line in BioPlex 3.0 (PMID: 33961781) should be compared directly. For comparison of HEK293T and HCT116 interaction networks with relaxed threshold = 0.1, see BioPlex Interactome (https://bioplex.hms.harvard.edu/index.php).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
GPR114 ACVR1B | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.944 | BioGRID | 2252870 | |
GPR114 ACVR1B | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.878 | BioGRID | 3247087 |
Curated By
- BioGRID