BAIT

DBR1

PRP26, L000000495, YKL149C
RNA lariat debranching enzyme; catalyzes debranching of lariat introns formed during pre-mRNA splicing; required for efficient Ty1 transposition; knockdown of human homolog Dbr1 rescues toxicity of RNA-binding proteins TDP-43 and FUS which are implicated in amyotrophic lateral sclerosis (ALS), suggests potential therapeutic target for ALS and related TDP-43 proteinopathies
GO Process (5)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

TMA23

YMR268W-A, YMR269W
Nucleolar protein implicated in ribosome biogenesis; deletion extends chronological lifespan
GO Process (1)
GO Function (0)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing.

Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ

We used a quantitative, high-density genetic interaction map, or E-MAP (Epistatic MiniArray Profile), to interrogate the relationships within and between RNA-processing pathways. Due to their complexity and the essential roles of many of the components, these pathways have been difficult to functionally dissect. Here, we report the results for 107,155 individual interactions involving 552 mutations, 166 of which are hypomorphic ... [more]

Mol. Cell Dec. 05, 2008; 32(5);735-46 [Pubmed: 19061648]

Quantitative Score

  • -3.100176 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DBR1 TMA23
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
339351

Curated By

  • BioGRID