BAIT

RPN4

SON1, UFD5, stress-regulated transcription factor RPN4, L000001984, YDL020C
Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

GIM3

PFD4, L000004369, YNL153C
Subunit of the heterohexameric cochaperone prefoldin complex; prefoldin binds specifically to cytosolic chaperonin and transfers target proteins to it; prefoldin complex also localizes to chromatin of actively transcribed genes in the nucleus and facilitates transcriptional elongation
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing.

Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ

We used a quantitative, high-density genetic interaction map, or E-MAP (Epistatic MiniArray Profile), to interrogate the relationships within and between RNA-processing pathways. Due to their complexity and the essential roles of many of the components, these pathways have been difficult to functionally dissect. Here, we report the results for 107,155 individual interactions involving 552 mutations, 166 of which are hypomorphic ... [more]

Mol. Cell Dec. 05, 2008; 32(5);735-46 [Pubmed: 19061648]

Quantitative Score

  • -2.607515 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GIM3 RPN4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.257BioGRID
2170254
RPN4 GIM3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454532

Curated By

  • BioGRID