BAIT

PET9

AAC2, ANC2, ADP/ATP carrier protein PET9, OP1, L000000004, L000001386, L000004346, YBL030C
Major ADP/ATP carrier of the mitochondrial inner membrane; exchanges cytosolic ADP for mitochondrially synthesized ATP; also imports heme and ATP; phosphorylated; required for viability in many lab strains that carry a sal1 mutation; PET9 has a paralog, AAC3, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

YME1

OSD1, YTA11, i-AAA protease YME1, L000002522, YPR024W
Catalytic subunit of the i-AAA protease complex; complex is located in the mitochondrial inner membrane; responsible for degradation of unfolded or misfolded mitochondrial gene products; serves as a nonconventional translocation motor to pull PNPase into the intermembrane space; also has a role in intermembrane space protein folding; mutation causes an elevated rate of mitochondrial turnover
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Dominant membrane uncoupling by mutant adenine nucleotide translocase in mitochondrial diseases.

Wang X, Salinas K, Zuo X, Kucejova B, Chen XJ

Adenine nucleotide translocase (Ant) is the most abundant protein on the mitochondrial inner membrane (MIM) primarily involved in ADP/ATP exchange. Ant also possesses a discrete membrane uncoupling activity. Specific mis-sense mutations in the human Ant1 cause autosomal dominant Progressive External Ophthalmoplegia (adPEO), mitochondrial myopathy and cardiomyopathy, which are commonly manifested by fractional mitochondrial DNA (mtDNA) deletions. It is currently thought ... [more]

Hum. Mol. Genet. Dec. 15, 2008; 17(24);4036-44 [Pubmed: 18809618]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
YME1 PET9
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
3623737
PET9 YME1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2345939
PET9 YME1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2345936
PET9 YME1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
339056

Curated By

  • BioGRID