BAIT

SMI1

KNR4, L000000909, YGR229C
Protein involved in the regulation of cell wall synthesis; proposed to be involved in coordinating cell cycle progression with cell wall integrity
GO Process (2)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

CNB1

CRV1, YCN2, calcineurin regulatory subunit B, L000000371, YKL190W
Calcineurin B; regulatory subunit of calcineurin, a Ca++/calmodulin-regulated type 2B protein phosphatase which regulates Crz1p (stress-response transcription factor); other calcineurin subunit encoded by CNA1 and/or CMP1; regulates function of Aly1p alpha-arrestin; myristoylation by Nmt1p reduces calcineurin activity in response to submaximal Ca signals, is needed to prevent constitutive phosphatase activity; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Structure-function analysis of Knr4/Smi1, a newly member of intrinsically disordered proteins family, indispensable in the absence of a functional PKC1-SLT2 pathway in Saccharomyces cerevisiae.

Durand F, Dagkessamanskaia A, Martin-Yken H, Graille M, Van Tilbeurgh H, Uversky VN, Francois JM

The coordination between cell wall synthesis and cell growth in the yeast Saccharomyces cerevisiae implicates the PKC1-dependent MAP kinase pathway. KNR4, encoding a 505 amino acid long protein, participates in this coordination, since it displays synthetic lethality with all the members of the PKC1 pathway and shows physical interaction with Slt2/Mpk1. The recent finding that KNR4 interacts genetically or physically ... [more]

Yeast Aug. 01, 2008; 25(8);563-76 [Pubmed: 18668512]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SMI1 CNB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1346BioGRID
384113
CNB1 SMI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3107BioGRID
2144663
SMI1 CNB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1777BioGRID
2123469
SMI1 CNB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.1693BioGRID
897271
SMI1 CNB1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
452107
SMI1 CNB1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
485755
CNB1 SMI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
114213

Curated By

  • BioGRID