ERBB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- axon guidance [TAS]
- cell proliferation [TAS]
- cell surface receptor signaling pathway [IDA]
- enzyme linked receptor protein signaling pathway [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-tyrosine phosphorylation [IDA, IGI, TAS]
- phosphatidylinositol 3-kinase signaling [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of Rho GTPase activity [ISS]
- positive regulation of cell adhesion [IDA]
- positive regulation of cell growth [IMP]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of protein phosphorylation [ISS]
- positive regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of translation [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of ERK1 and ERK2 cascade [IMP]
- regulation of angiogenesis [NAS]
- regulation of microtubule-based process [IDA]
- signal transduction [IDA]
- signal transduction by phosphorylation [TAS]
- transmembrane receptor protein tyrosine kinase signaling pathway [IDA, TAS]
- wound healing [IDA]
Gene Ontology Molecular Function- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
Gene Ontology Cellular Component
BTRC
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IBA]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of sequence-specific DNA binding transcription factor activity [TAS]
- negative regulation of smoothened signaling pathway [TAS]
- negative regulation of transcription, DNA-templated [IMP]
- positive regulation of circadian rhythm [ISS]
- positive regulation of proteolysis [IMP]
- positive regulation of transcription, DNA-templated [ISS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein dephosphorylation [ISS]
- protein destabilization [IMP]
- protein ubiquitination [IDA]
- regulation of circadian rhythm [IDA]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- signal transduction [TAS]
- ubiquitin-dependent protein catabolic process [IDA]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells.
Rationale: Dysregulation of the PI3K/AKT/mTOR pathway occurs frequently in cancers, providing an attractive therapeutic target for anticancer treatments. DEPTOR plays essential roles in regulation of cell proliferation and survival by directly modulating mTOR activity. However, whether DEPTOR regulates the growth of ErbB2-positive breast cancer cells remains unknown. Methods: DEPTOR expression was determined by TCGA data analysis and immunohistochemistry of human ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID