BAIT

RRD1

YPA1, peptidylprolyl isomerase RRD1, L000004483, YIL153W
Peptidyl-prolyl cis/trans-isomerase; activator of the phosphotyrosyl phosphatase activity of PP2A; involved in G1 phase progression, microtubule dynamics, bud morphogenesis and DNA repair; required for rapid reduction of Sgs1p levels in response to rapamycin; subunit of the Tap42p-Sit4p-Rrd1p complex; protein increases in abundance and relative distribution to the nucleus increases upon DNA replication stress
UBI
PHO

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

PREY

INP52

SJL2, phosphatidylinositol-3-/phosphoinositide 5-phosphatase INP52, L000003985, YNL106C
Polyphosphatidylinositol phosphatase; dephosphorylates a number of phosphatidylinositol phosphates (PtdInsPs, PIPs) to PI; involved in endocytosis; hyperosmotic stress causes translocation to actin patches; synaptojanin-like protein with a Sac1 domain; INP52 has a paralog, INP53, that arose from the whole genome duplication
UBI
PHO

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • -3.283465 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Curated By

  • BioGRID