BAIT
FAR10
YLR238W
Protein involved in recovery from arrest in response to pheromone; acts in a cell cycle arrest recovery pathway independent from Far1p; interacts with Far3p, Far7p, Far8p, Far9p, and Far11p; potential Cdc28p substrate; FAR10 has a paralog, VPS64, that arose from the whole genome duplication
GO Process (1)
GO Function (0)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
EAF3
YPR023C
Component of the Rpd3S histone deacetylase complex; Esa1p-associated factor, nonessential component of the NuA4 acetyltransferase complex, homologous to Drosophila dosage compensation protein MSL3; plays a role in regulating Ty1 transposition
GO Process (8)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
- DNA repair [IDA]
- histone acetylation [IDA]
- histone deacetylation [IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of transcription, DNA-templated [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -2.627467 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID