BAIT

GIM3

PFD4, L000004369, YNL153C
Subunit of the heterohexameric cochaperone prefoldin complex; prefoldin binds specifically to cytosolic chaperonin and transfers target proteins to it; prefoldin complex also localizes to chromatin of actively transcribed genes in the nucleus and facilitates transcriptional elongation
UBI
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

PREY

MCM16

L000003997, YPR046W
Component of the Ctf19 complex and the COMA subcomplex; involved in kinetochore-microtubule mediated chromosome segregation; binds to centromere DNA; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-H and fission yeast fta3
GO Process (2)
GO Function (0)
GO Component (1)

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • -7.021169 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MCM16 GIM3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-7.357BioGRID
215474
GIM3 MCM16
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.157BioGRID
2170379
MCM16 GIM3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2185BioGRID
2194986
GIM3 MCM16
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-7.4125BioGRID
311049
GIM3 MCM16
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
451214
MCM16 GIM3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
195689

Curated By

  • BioGRID