BAIT
GLR1
LPG17, glutathione-disulfide reductase GLR1, L000000714, YPL091W
Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
TOP1
MAK1, MAK17, DNA topoisomerase 1, L000002319, YOL006C
Topoisomerase I; nuclear enzyme that relieves torsional strain in DNA by cleaving and re-sealing the phosphodiester backbone; relaxes both positively and negatively supercoiled DNA; functions in replication, transcription, and recombination; role in processing ribonucleoside monophosphates in genomic DNA into irreversible single-strand breaks
GO Process (9)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
- DNA strand elongation involved in DNA replication [IMP]
- DNA topological change [IDA, IMP]
- chromatin assembly or disassembly [IMP]
- chromatin silencing at rDNA [IMP]
- mitotic chromosome condensation [IGI, IMP]
- nuclear migration [IGI, IMP]
- regulation of mitotic recombination [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Disulfide cross-links reveal conserved features of DNA topoisomerase I architecture and a role for the N terminus in clamp closure.
In eukaryotes, DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a conserved mechanism of transient DNA strand breakage, rotation, and religation. The unusual architecture of the monomeric human enzyme comprises a conserved protein clamp, which is tightly wrapped about duplex DNA, and an extended coiled-coil linker domain that appropriately positions the C-terminal active site tyrosine domain against ... [more]
J. Biol. Chem. Oct. 10, 2008; 283(41);27767-75 [Pubmed: 18693244]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID