BAIT

TGS1

YPL157W
Trimethyl guanosine synthase, conserved nucleolar methyl transferase; converts the m(7)G cap structure of snRNAs, snoRNAs, and telomerase TLC1 RNA to m(2,2,7)G; also required for nucleolar assembly and splicing of meiotic pre-mRNAs; interacts with Swm2p, which may confer substrate specificity on Tgs1p
GO Process (5)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

SOH1

MED31, L000001982, YGL127C
Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme; involved in telomere maintenance; conserved with other metazoan MED31 subunits
GO Process (5)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways.

Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, Boone C, Shuman S, Schwer B

Trimethylguanosine synthase (Tgs1) is the enzyme that converts standard m(7)G caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal small nuclear RNAs. Fungi and mammalian somatic cells are able to grow in the absence of Tgs1 and TMG caps, suggesting that an essential function of the TMG cap might be obscured by functional redundancy. A systematic screen in budding yeast ... [more]

J. Biol. Chem. Nov. 14, 2008; 283(46);31706-18 [Pubmed: 18775984]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TGS1 SOH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.3176BioGRID
309137

Curated By

  • BioGRID