BAIT

UAF30

YOR295W
Subunit of UAF (upstream activation factor) complex; UAF is an RNA polymerase I specific transcription stimulatory factor composed of Uaf30p, Rrn5p, Rrn9p, Rrn10p, histones H3 and H4; targeting factor for the UAF that facilitates activation of many rDNA genes; deletion decreases cellular growth rate; UAF30 has a paralog, TRI1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

TOP1

MAK1, MAK17, DNA topoisomerase 1, L000002319, YOL006C
Topoisomerase I; nuclear enzyme that relieves torsional strain in DNA by cleaving and re-sealing the phosphodiester backbone; relaxes both positively and negatively supercoiled DNA; functions in replication, transcription, and recombination; role in processing ribonucleoside monophosphates in genomic DNA into irreversible single-strand breaks
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30.

Hontz RD, French SL, Oakes ML, Tongaonkar P, Nomura M, Beyer AL, Smith JS

Upstream activating factor (UAF) is a multisubunit complex that functions in the activation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I). Cells lacking the Uaf30 subunit of UAF reduce the rRNA synthesis rate by approximately 70% compared to wild-type cells and produce rRNA using both Pol I and Pol II. Miller chromatin spreads demonstrated that even though ... [more]

Mol. Cell. Biol. Nov. 01, 2008; 28(21);6709-19 [Pubmed: 18765638]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
UAF30 TOP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
1035885

Curated By

  • BioGRID