BAIT

RTT106

YNL206C
Histone chaperone; involved in regulation of chromatin structure in both transcribed and silenced chromosomal regions; affects transcriptional elongation; has a role in regulation of Ty1 transposition; interacts physically and functionally with Chromatin Assembly Factor-1 (CAF-1)
Saccharomyces cerevisiae (S288c)
PREY

VMA7

H(+)-transporting V1 sector ATPase subunit F, L000002462, YGR020C
Subunit F of the V1 peripheral membrane domain of V-ATPase; part of the electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; the V1 peripheral membrane domain of vacuolar H+-ATPase (V-ATPase) has eight subunits
GO Process (1)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The Rtt106 histone chaperone is functionally linked to transcription elongation and is involved in the regulation of spurious transcription from cryptic promoters in yeast.

Imbeault D, Gamar L, Rufiange A, Paquet E, Nourani A

Rtt106 is a histone chaperone that has been suggested to play a role in heterochromatin-mediated silencing in Saccharomyces cerevisiae. It interacts physically and functionally with the chromatin assembly factor-1 (CAF-1), which is associated with replication-coupled nucleosomal deposition. In this work, we have taken several approaches to study Rtt106 in greater detail and have identified a previously unknown function of Rtt106. ... [more]

J. Biol. Chem. Oct. 10, 2008; 283(41);27350-4 [Pubmed: 18708354]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID