MMS4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
YEN1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis.
The Bloom's helicase ortholog, Sgs1, orchestrates the formation and disengagement of recombination intermediates to enable controlled crossing-over during meiotic and mitotic DNA repair. Whether its enzymatic activity is temporally regulated to implement formation of noncrossovers prior to the activation of crossover-nucleases is unknown. Here, we show that, akin to the Mus81-Mms4, Yen1, and MutL?-Exo1 nucleases, Sgs1 helicase function is under ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
- phenotype: chromosome/plasmid maintenance (APO:0000143)
Additional Notes
- genetic complex
- sgs1-9A/mms4-mn/YEN1-ON mutants showed a markedly improved pattern of chromosome segregation and about 60% of the products of meiosis were viable
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MMS4 YEN1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 1110979 | |
MMS4 YEN1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 656626 | |
YEN1 MMS4 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 675395 | |
MMS4 YEN1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2347315 | |
MMS4 YEN1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 938992 | |
YEN1 MMS4 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 656222 | |
YEN1 MMS4 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 554939 | |
MMS4 YEN1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2347316 | |
YEN1 MMS4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 656753 |
Curated By
- BioGRID