BAIT
PSMD9
Rpn4, p27
proteasome (prosome, macropain) 26S subunit, non-ATPase, 9
GO Process (26)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of insulin secretion [ISS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of insulin secretion [ISS]
- positive regulation of transcription, DNA-templated [ISS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- proteasome regulatory particle assembly [IMP]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- ubiquitin-dependent protein catabolic process [NAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
NPM1
B23, NPM
nucleophosmin (nucleolar phosphoprotein B23, numatrin)
GO Process (23)
GO Function (14)
GO Component (10)
Gene Ontology Biological Process
- CENP-A containing nucleosome assembly [TAS]
- DNA repair [IDA]
- cell aging [IMP, ISS]
- centrosome cycle [IMP, ISS]
- intracellular protein transport [TAS]
- negative regulation of apoptotic process [IDA, NAS]
- negative regulation of cell proliferation [IMP, ISS]
- negative regulation of centrosome duplication [IMP]
- negative regulation of protein kinase activity by regulation of protein phosphorylation [IDA]
- nucleocytoplasmic transport [IDA, TAS]
- nucleosome assembly [IDA, TAS]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of translation [IDA]
- protein localization [IDA]
- protein oligomerization [IDA]
- regulation of centriole replication [IMP]
- regulation of eIF2 alpha phosphorylation by dsRNA [IDA]
- regulation of endodeoxyribonuclease activity [IDA]
- regulation of endoribonuclease activity [IDA]
- response to stress [IMP]
- ribosome assembly [TAS]
- signal transduction [NAS]
- viral process [TAS]
Gene Ontology Molecular Function- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
PSMD9 ribosomal protein network maintains nucleolar architecture and WT p53 levels.
Capitalizing on an unexpected observation that multiple free ribosomal proteins co-purify/pull-down with PSMD9, we report here for the first time that PSMD9 is necessary to maintain the morphology and integrity of the nucleolus. As seen by NPM1 immunofluorescence and electron microscopy, the nucleolar structure is clearly disrupted in PSMD9 null MCF7 breast cancer cells. The resultant stress is pronounced leading ... [more]
Biochem Biophys Res Commun Dec. 23, 2020; 563();105-112 [Pubmed: 34077860]
Throughput
- Low Throughput
Curated By
- BioGRID