BAIT
FOXL1
FKH6, FKHL11, FREAC7
forkhead box L1
GO Process (8)
GO Function (5)
GO Component (1)
Gene Ontology Biological Process
- heart development [IMP]
- multicellular organismal development [NAS]
- organ morphogenesis [ISS]
- proteoglycan biosynthetic process [ISS]
- regulation of Wnt signaling pathway [ISS]
- regulation of transcription from RNA polymerase II promoter [IBA]
- transcription from RNA polymerase II promoter [IBA]
- visceral mesoderm-endoderm interaction involved in midgut development [ISS]
Gene Ontology Molecular Function
Homo sapiens
PREY
CALM2
CAMII, PHKD, PHKD2
calmodulin 2 (phosphorylase kinase, delta)
GO Process (43)
GO Function (11)
GO Component (13)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- activation of phospholipase C activity [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- detection of calcium ion [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glucose metabolic process [TAS]
- glycogen catabolic process [TAS]
- innate immune response [TAS]
- inositol phosphate metabolic process [TAS]
- membrane organization [TAS]
- muscle contraction [TAS]
- negative regulation of peptidyl-threonine phosphorylation [TAS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide metabolic process [TAS]
- phototransduction, visible light [TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cyclic nucleotide metabolic process [IDA]
- positive regulation of cyclic-nucleotide phosphodiesterase activity [IDA]
- positive regulation of peptidyl-threonine phosphorylation [TAS]
- positive regulation of phosphoprotein phosphatase activity [IDA]
- positive regulation of protein autophosphorylation [TAS]
- positive regulation of protein dephosphorylation [IDA]
- positive regulation of protein serine/threonine kinase activity [TAS]
- positive regulation of ryanodine-sensitive calcium-release channel activity [IDA]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC]
- regulation of cell communication by electrical coupling involved in cardiac conduction [IC]
- regulation of cytokinesis [IMP]
- regulation of heart rate [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IDA]
- regulation of rhodopsin mediated signaling pathway [TAS]
- response to calcium ion [IDA]
- rhodopsin mediated signaling pathway [TAS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Human transcription factor protein interaction networks
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein-protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering ... [more]
Nature Communications Feb. 09, 2022; (); [Pubmed: 35140242]
Throughput
- High Throughput
Additional Notes
- BioID
Curated By
- BioGRID