BAIT

RPB4

CTF15, DNA-directed RNA polymerase II subunit RPB4, B32, L000001678, YJL140W
RNA polymerase II subunit B32; forms dissociable heterodimer with Rpb7p; Rpb4/7 dissociates from RNAPII as Ser2 CTD phosphorylation increases; Rpb4/7 regulates cellular lifespan via mRNA decay process; involved in recruitment of 3'-end processing factors to transcribing RNAPII complex, export of mRNA to cytoplasm under stress conditions; also involved in translation initiation
Saccharomyces cerevisiae (S288c)
PREY

DST1

PPR2, SII, S-II, TFIIS, P37, L000001476, L000000530, YGL043W
General transcription elongation factor TFIIS; enables RNA polymerase II to read through blocks to elongation by stimulating cleavage of nascent transcripts stalled at transcription arrest sites; maintains RNAPII elongation activity on ribosomal protein genes during conditions of transcriptional stress
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Numerous Post-translational Modifications of RNA Polymerase II Subunit Rpb4/7 Link Transcription to Post-transcriptional Mechanisms.

Richard S, Gross L, Fischer J, Bendalak K, Ziv T, Urim S, Choder M

Rpb4/7 binds RNA polymerase II (RNA Pol II) transcripts co-transcriptionally and accompanies them throughout their lives. By virtue of its capacity to interact with key regulators (e.g., RNA Pol II, eIF3, and Pat1) temporally and spatially, Rpb4/7 regulates the major stages of the mRNA life cycle. Here we show that Rpb4/7 can undergo more than 100 combinations of post-translational modifications ... [more]

Cell Rep Dec. 12, 2020; 34(2);108578 [Pubmed: 33440147]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPB4 DST1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
939311
DST1 RPB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
555118
RPB4 DST1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
555120
DST1 RPB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163115
RPB4 DST1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163116
DST1 RPB4
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
567406

Curated By

  • BioGRID