RPB4
Gene Ontology Biological Process
- mRNA export from nucleus in response to heat stress [IMP]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [IMP]
- positive regulation of translational initiation [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- transcription from RNA polymerase II promoter [IMP]
- transcription initiation from RNA polymerase II promoter [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SPT4
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IGI]
- chromatin organization [IMP]
- chromatin silencing [IMP]
- chromosome segregation [IMP]
- intracellular mRNA localization [IMP]
- mRNA splicing, via spliceosome [IMP]
- negative regulation of transcription elongation from RNA polymerase I promoter [IGI]
- positive regulation of transcription elongation from RNA polymerase I promoter [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- regulation of rRNA processing [IMP]
- regulation of transcription, DNA-templated [IMP]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Numerous Post-translational Modifications of RNA Polymerase II Subunit Rpb4/7 Link Transcription to Post-transcriptional Mechanisms.
Rpb4/7 binds RNA polymerase II (RNA Pol II) transcripts co-transcriptionally and accompanies them throughout their lives. By virtue of its capacity to interact with key regulators (e.g., RNA Pol II, eIF3, and Pat1) temporally and spatially, Rpb4/7 regulates the major stages of the mRNA life cycle. Here we show that Rpb4/7 can undergo more than 100 combinations of post-translational modifications ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SPT4 RPB4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
SPT4 RPB4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 10 | BioGRID | 3597474 | |
SPT4 RPB4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
SPT4 RPB4 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
RPB4 SPT4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 939314 |
Curated By
- BioGRID