BAIT

PSD1

phosphatidylserine decarboxylase 1, L000001518, YNL169C
Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space
Saccharomyces cerevisiae (S288c)
PREY

YPT6

Rab family GTPase YPT6, L000002896, L000002948, YLR262C
Rab family GTPase; Ras-like GTP binding protein involved in the secretory pathway, required for fusion of endosome-derived vesicles with the late Golgi, maturation of the vacuolar carboxypeptidase Y; resides temporarily at the Golgi, dissociates into cytosol upon arrival of the Rab GTPaseYpt32p, which also functions in the late Golgi; Golgi-localized form is bound to GTP, while cytosolic form is GDP-bound; homolog of the mammalian Rab6
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Ist2 recruits the lipid transporters Osh6/7 to ER-PM contacts to maintain phospholipid metabolism.

Wong AKO, Young BP, Loewen CJR

ER-plasma membrane (PM) contacts are proposed to be held together by distinct families of tethering proteins, which in yeast include the VAP homologues Scs2/22, the extended-synaptotagmin homologues Tcb1/2/3, and the TMEM16 homologue Ist2. It is unclear whether these tethers act redundantly or whether individual tethers have specific functions at contacts. Here, we show that Ist2 directly recruits the phosphatidylserine (PS) ... [more]

J Cell Biol Dec. 06, 2020; 220(9); [Pubmed: 34259806]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PSD1 YPT6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2014BioGRID
409766
PSD1 YPT6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2021BioGRID
2170851
YPT6 PSD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.9369BioGRID
587080
PSD1 YPT6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.9369BioGRID
585290
PSD1 YPT6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.881BioGRID
899887
YPT6 PSD1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109767

Curated By

  • BioGRID