RBBP4
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- ATP-dependent chromatin remodeling [IDA]
- CENP-A containing nucleosome assembly [TAS]
- DNA replication-dependent nucleosome assembly [IDA]
- DNA replication-independent nucleosome assembly [IDA]
- G2/M transition of mitotic cell cycle [TAS]
- chromatin assembly [IDA]
- chromatin remodeling [IDA]
- mitotic cell cycle [TAS]
- negative regulation of cell proliferation [TAS]
- nucleosome assembly [TAS]
- regulation of cell cycle [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
AEBP2
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex.
Recent studies have revealed the intrinsic histone methyltransferase (HMTase) activity of the EED-EZH2 complex and its role in Hox gene silencing, X inactivation, and cancer metastasis. In this study, we focus on the function of individual components. We found that the HMTase activity requires a minimum of three components-EZH2, EED, and SUZ12-while AEBP2 is required for optimal enzymatic activity. Using ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RBBP4 AEBP2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
AEBP2 RBBP4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
RBBP4 AEBP2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3173152 | |
AEBP2 RBBP4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3059658 | |
AEBP2 RBBP4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 13.7835 | BioGRID | 2949739 |
Curated By
- BioGRID