Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

OpenCell: Endogenous tagging for the cartography of human cellular organization.

Cho NH, Cheveralls KC, Brunner AD, Kim K, Michaelis AC, Raghavan P, Kobayashi H, Savy L, Li JY, Canaj H, Kim JYS, Stewart EM, Gnann C, McCarthy F, Cabrera JP, Brunetti RM, Chhun BB, Dingle G, Hein MY, Huang B, Mehta SB, Weissman JS, Gomez-Sjoeberg R, Itzhak DN, Royer LA, Mann M, Leonetti MD

Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates ... [more]

Science Dec. 11, 2021; 375(6585);eabi6983 [Pubmed: 35271311]

Throughput

  • High Throughput

Additional Notes

  • Bait generated from library of CRISPR-edited human embryonic kidney (HEK) 293T cell lines harboring fluorescent tags on individual proteins

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPL11 RPL4
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3367529
RPL11 RPL4
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High0.9949BioGRID
3195040
RPL4 RPL11
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPL11 RPL4
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

High0.987BioGRID
742779
RPL4 RPL11
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

High-BioGRID
3443000
RPL4 RPL11
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

High1BioGRID
1269107
RPL11 RPL4
Cross-Linking-MS (XL-MS)
Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

High-BioGRID
-

Curated By

  • BioGRID