BAIT
FAM60A
C12orf14, TERA, L4
family with sequence similarity 60, member A
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
PRKDC
DNA-PKcs, DNAPK, DNPK1, HYRC, HYRC1, IMD26, XRCC7, p350
protein kinase, DNA-activated, catalytic polypeptide
GO Process (13)
GO Function (6)
GO Component (6)
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular protein modification process [TAS]
- cellular response to insulin stimulus [IMP]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [IBA]
- double-strand break repair via nonhomologous end joining [TAS]
- innate immune response [TAS]
- negative regulation of protein phosphorylation [ISS]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of type I interferon production [TAS]
- regulation of circadian rhythm [ISS]
- signal transduction involved in mitotic G1 DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Family with sequence similarity 60A (FAM60A) protein is a cell cycle-fluctuating regulator of the SIN3-HDAC1 histone deacetylase complex.
The SIN3A-HDAC complex deacetylates histones thereby repressing gene transcription. Here we describe family with sequence similarity 60A (FAM60A), a cell cycle-regulated protein that binds to the SIN3-HDAC complex. FAM60A expression peaks during G(1) and S phases of the cell cycle in U2OS cells, in a manner similar to the G(1) regulator cyclin D1, which is a known target of SIN3-HDAC. ... [more]
J Biol Chem Sep. 21, 2012; 287(39);32346-53 [Pubmed: 22865885]
Throughput
- Low Throughput
Curated By
- BioGRID