BAIT

YAP1

PAR1, SNQ3, DNA-binding transcription factor YAP1, L000001364, YML007W
Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

PHO23

L000004300, YNL097C
Component of the Rpd3L histone deacetylase complex; involved in transcriptional regulation of PHO5; affects termination of snoRNAs and cryptic unstable transcripts (CUTs); C-terminus has similarity to human candidate tumor suppressor p33(ING1) and its isoform ING3
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species.

Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim WA, Shokat KM, Burlingame AL, Krogan NJ

The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study of the phosphoproteomes of three yeast species (Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe) in order to quantify the evolutionary rate of change of phosphorylation. We ... [more]

PLoS Biol. Jun. 16, 2009; 7(6);e1000134 [Pubmed: 19547744]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
YAP1 PHO23
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.6539BioGRID
510587

Curated By

  • BioGRID