BAIT

MAF1

RNA polymerase III-inhibiting protein MAF1, L000002614, YDR005C
Highly conserved negative regulator of RNA polymerase III; involved in tRNA processing and stability; inhibits tRNA degradation via rapid tRNA decay (RTD) pathway; binds N-terminal domain of Rpc160p subunit of Pol III to prevent closed-complex formation; localization and activity are regulated by phosphorylation, mediated by TORC1, protein kinase A, and Sch9p; localizes to cytoplasm during vegetative growth and translocates to nucleus and nucleolus under stress conditions
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

PUS1

pseudouridine synthase PUS1, L000003360, YPL212C
tRNA:pseudouridine synthase; introduces pseudouridines at positions 26-28, 34-36, 65, and 67 of tRNA; also acts on U2 snRNA; also pseudouridylates some mRNAs, and pseudouridylation level varies with growth phase; nuclear protein that appears to be involved in tRNA export; PUS1 has a paralog, PUS2, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast.

Decourty L, Malabat C, Frachon E, Jacquier A, Saveanu C

Gene deletion and gene expression alteration can lead to growth defects that are amplified or reduced when a second mutation is present in the same cells. We performed 154 genetic interaction mapping (GIM) screens with query mutants related with RNA metabolism and estimated the growth rates of about 700 000 double mutant Saccharomyces cerevisiae strains. The tested targets included the gene ... [more]

Nucleic Acids Res Aug. 06, 2021; (); [Pubmed: 34358317]

Throughput

  • High Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Additional Notes

  • 479 genetic interactions (GIs) were detected by both genetic interaction mapping (GIM) and SGA screens (adjusted log2(Q/R) score lower than -1 and SGA fitness score lower than -0.1).
  • Supplementary table S6

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MAF1 PUS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3942BioGRID
365441
MAF1 PUS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3608BioGRID
2092945
PUS1 MAF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5478BioGRID
2193097
MAF1 PUS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
335646
MAF1 PUS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
334283

Curated By

  • BioGRID