CHL1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SCC2
Gene Ontology Biological Process
- 2-micrometer plasmid partitioning [IC]
- double-strand break repair [IMP]
- establishment of mitotic sister chromatid cohesion [IMP]
- establishment of protein localization to chromatin [IMP]
- mitotic chromosome condensation [IMP]
- protein localization to chromatin [IMP]
- rDNA condensation [IMP]
- replication-born double-strand break repair via sister chromatid exchange [IMP]
- tRNA gene clustering [IMP]
- transcription-dependent tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions.
Genetic screens can identify synthetic lethal (SL) interactions and uncover potential anticancer therapeutic targets. However, most SL screens have utilized knockout or knockdown approaches that do not accurately mimic chemical inhibition of a target protein. Here, we test whether missense mutations can be utilized as a model for a type of protein inhibition that creates a dominant gain-of-function cytotoxicity. We ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SCC2 CHL1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
SCC2 CHL1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3976 | BioGRID | 367782 | |
CHL1 SCC2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6501 | BioGRID | 2071836 | |
SCC2 CHL1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5199 | BioGRID | 1969245 | |
SCC2 CHL1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 818334 | |
SCC2 CHL1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 3585989 | |
SCC2 CHL1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2757155 |
Curated By
- BioGRID