BAIT

CHL1

CTF1, LPA9, MCM12, L000000318, YPL008W
Probable DNA helicase; involved in sister-chromatid cohesion and genome integrity and interstrand cross-link repair; interacts with ECO1 and CTF18; mutants are defective in silencing, rDNA recombination, aging and the heat shock response; FANCJ-like helicase family member; mutations in the human homolog, DDX11/ChLR1, cause Warsaw breakage syndrome
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

MAD1

coiled-coil domain-containing protein MAD1, L000000974, YGL086W
Coiled-coil protein involved in spindle-assembly checkpoint; required for inhibition of karyopherin/importin Pse1p (aka Kap121p) upon spindle assembly checkpoint arrest; phosphorylated by Mps1p upon checkpoint activation which leads to inhibition of anaphase promoting complex activity; forms a complex with Mad2p; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes.

Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C

Synthetic lethal genetic interaction networks define genes that work together to control essential functions and have been studied extensively in Saccharomyces cerevisiae using the synthetic genetic array (SGA) analysis technique (ScSGA). The extent to which synthetic lethal or other genetic interaction networks are conserved between species remains uncertain. To address this question, we compared literature-curated and experimentally derived genetic interaction ... [more]

Proc. Natl. Acad. Sci. U.S.A. Oct. 28, 2008; 105(43);16653-8 [Pubmed: 18931302]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • EMAP

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CHL1 MAD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.4757BioGRID
214128
CHL1 MAD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3441BioGRID
2188617
MAD1 CHL1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2751BioGRID
2429694
MAD1 CHL1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167412
CHL1 MAD1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111036
CHL1 MAD1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157909

Curated By

  • BioGRID