BAIT

RAD27

ERC11, FEN1, RTH1, multifunctional nuclease RAD27, L000002742, L000000565, YKL113C
5' to 3' exonuclease, 5' flap endonuclease; required for Okazaki fragment processing and maturation, for long-patch base-excision repair and large loop repair (LLR), ribonucleotide excision repair; member of the S. pombe RAD2/FEN1 family; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

RPN4

SON1, UFD5, stress-regulated transcription factor RPN4, L000001984, YDL020C
Transcription factor that stimulates expression of proteasome genes; Rpn4p levels are in turn regulated by the 26S proteasome in a negative feedback control mechanism; RPN4 is transcriptionally regulated by various stress responses; relative distribution to the nucleus increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes.

Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C

Synthetic lethal genetic interaction networks define genes that work together to control essential functions and have been studied extensively in Saccharomyces cerevisiae using the synthetic genetic array (SGA) analysis technique (ScSGA). The extent to which synthetic lethal or other genetic interaction networks are conserved between species remains uncertain. To address this question, we compared literature-curated and experimentally derived genetic interaction ... [more]

Proc. Natl. Acad. Sci. U.S.A. Oct. 28, 2008; 105(43);16653-8 [Pubmed: 18931302]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • EMAP

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD27 RPN4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3007BioGRID
394078
RPN4 RAD27
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3007BioGRID
364767
RPN4 RAD27
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2983BioGRID
2088833
RAD27 RPN4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455840
RAD27 RPN4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
166774
RPN4 RAD27
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
455095

Curated By

  • BioGRID