OGT
Gene Ontology Biological Process
- apoptotic process [IDA]
- cellular response to retinoic acid [IMP]
- chromatin organization [TAS]
- circadian regulation of gene expression [ISS]
- histone H3-K4 trimethylation [IMP]
- histone H4-K16 acetylation [IDA]
- histone H4-K5 acetylation [IDA]
- histone H4-K8 acetylation [IDA]
- negative regulation of protein ubiquitination [ISS]
- phosphatidylinositol-mediated signaling [IDA]
- positive regulation of catalytic activity [IDA]
- positive regulation of granulocyte differentiation [IMP]
- positive regulation of histone H3-K27 methylation [IMP]
- positive regulation of histone H3-K4 methylation [IDA]
- positive regulation of proteolysis [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- protein O-linked glycosylation [IDA, IMP]
- regulation of Rac protein signal transduction [IDA]
- regulation of gluconeogenesis involved in cellular glucose homeostasis [ISS]
- regulation of glycolytic process [IDA]
- regulation of insulin receptor signaling pathway [IDA]
- response to insulin [IDA]
- response to nutrient [TAS]
- signal transduction [TAS]
Gene Ontology Molecular Function- acetylglucosaminyltransferase activity [TAS]
- enzyme activator activity [IDA]
- histone acetyltransferase activity (H4-K16 specific) [IDA]
- histone acetyltransferase activity (H4-K5 specific) [IDA]
- histone acetyltransferase activity (H4-K8 specific) [IDA]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- protein N-acetylglucosaminyltransferase activity [IDA]
- protein O-GlcNAc transferase activity [IMP, ISS]
- protein binding [IPI]
- acetylglucosaminyltransferase activity [TAS]
- enzyme activator activity [IDA]
- histone acetyltransferase activity (H4-K16 specific) [IDA]
- histone acetyltransferase activity (H4-K5 specific) [IDA]
- histone acetyltransferase activity (H4-K8 specific) [IDA]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- protein N-acetylglucosaminyltransferase activity [IDA]
- protein O-GlcNAc transferase activity [IMP, ISS]
- protein binding [IPI]
Gene Ontology Cellular Component
HDAC1
Gene Ontology Biological Process
- ATP-dependent chromatin remodeling [IDA]
- Notch signaling pathway [TAS]
- blood coagulation [TAS]
- chromatin modification [TAS]
- chromatin remodeling [IC]
- circadian regulation of gene expression [ISS]
- embryonic digit morphogenesis [ISS]
- epidermal cell differentiation [ISS]
- eyelid development in camera-type eye [ISS]
- fungiform papilla formation [ISS]
- gene expression [TAS]
- hair follicle placode formation [ISS]
- histone H3 deacetylation [IDA]
- histone H4 deacetylation [IDA]
- histone deacetylation [IMP]
- mitotic cell cycle [TAS]
- negative regulation by host of viral transcription [IMP]
- negative regulation of androgen receptor signaling pathway [IDA]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell cycle [TAS]
- negative regulation of myotube differentiation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- negative regulation of transcription, DNA-templated [IMP, ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- odontogenesis of dentin-containing tooth [ISS]
- positive regulation of cell proliferation [IMP]
- positive regulation of receptor biosynthetic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- protein deacetylation [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription corepressor activity [IDA]
- activating transcription factor binding [IPI]
- core promoter binding [IDA]
- deacetylase activity [ISS]
- enzyme binding [IPI]
- histone deacetylase activity [IDA, IMP, TAS]
- histone deacetylase binding [IPI]
- nucleosomal DNA binding [IDA]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription corepressor activity [IDA]
- activating transcription factor binding [IPI]
- core promoter binding [IDA]
- deacetylase activity [ISS]
- enzyme binding [IPI]
- histone deacetylase activity [IDA, IMP, TAS]
- histone deacetylase binding [IPI]
- nucleosomal DNA binding [IDA]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [ISS]
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery.
Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macromolecular networks on a proteome scale, but current methods are experimentally laborious, resource intensive and afford lesser quantitative accuracy. Here, we present a technically efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring and comparing, simultaneously, multi-protein assemblies across different experimental samples at a rate that is up to an order ... [more]
Throughput
- High Throughput
Additional Notes
- High confidence interactions were identified as having an EPIC score >=0.625 in applicable cell lines (MCF7, MDA231 or MCF10A)
- MCF10A cell line (score 0.726)
- MCF7 cell line (score 0.632)
- MDA231 cell line (score 0.732)
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HDAC1 OGT | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 3528034 | |
| OGT HDAC1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | High | - | BioGRID | - |
Curated By
- BioGRID