HTZ1
Gene Ontology Biological Process
Gene Ontology Molecular Function- chromatin binding [IDA, IGI, ISS]
- chromatin binding [IDA, IGI, ISS]
Gene Ontology Cellular Component
ISW1
Gene Ontology Biological Process
- DNA-templated transcription, elongation [IDA, IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin remodeling [IGI, IMP, IPI]
- heterochromatin maintenance involved in chromatin silencing [IGI, IMP]
- negative regulation of histone exchange [IMP]
- nucleosome positioning [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of chromatin organization [IMP]
- regulation of transcriptional start site selection at RNA polymerase II promoter [IGI]
- termination of RNA polymerase I transcription [IGI]
- termination of RNA polymerase II transcription [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
A novel proteomics approach for the discovery of chromatin-associated protein networks.
Protein-protein interaction mapping has progressed rapidly in recent years, enabling the completion of several high throughput studies. However, knowledge of physical interactions is limited for numerous classes of proteins, such as chromatin-bound proteins, because of their poor solubility when bound to DNA. To address this problem, we have developed a novel method, termed modified chromatin immunopurification (mChIP), that allows for ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ISW1 HTZ1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 3 | BioGRID | 3597911 | |
ISW1 HTZ1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | High | - | BioGRID | 461828 | |
HTZ1 ISW1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | High | - | BioGRID | 461888 | |
HTZ1 ISW1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 517489 | |
ISW1 HTZ1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 165168 | |
HTZ1 ISW1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 165169 | |
ISW1 HTZ1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 205991 |
Curated By
- BioGRID