BAIT

DCC1

YCL016C
Subunit of a complex with Ctf8p and Ctf18p; shares some components with Replication Factor C; required for sister chromatid cohesion and telomere length maintenance
GO Process (3)
GO Function (0)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Synthetic lethal genetic interactions that decrease somatic cell proliferation in Caenorhabditis elegans identify the alternative RFC CTF18 as a candidate cancer drug target.

McLellan J, O'Neil N, Tarailo S, Stoepel J, Bryan J, Rose A, Hieter P

Somatic mutations causing chromosome instability (CIN) in tumors can be exploited for selective killing of cancer cells by knockdown of second-site genes causing synthetic lethality. We tested and statistically validated synthetic lethal (SL) interactions between mutations in six Saccharomyces cerevisiae CIN genes orthologous to genes mutated in colon tumors and five additional CIN genes. To identify which SL interactions are ... [more]

Mol. Biol. Cell Dec. 01, 2009; 20(24);5306-13 [Pubmed: 19846659]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MRE11 DCC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.902BioGRID
541014
MRE11 DCC1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
456963
DCC1 MRE11
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453835
DCC1 MRE11
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110987

Curated By

  • BioGRID