DBF4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MCM4
Gene Ontology Biological Process
- DNA replication initiation [IGI]
- DNA strand elongation involved in DNA replication [IMP]
- DNA unwinding involved in DNA replication [IDA]
- double-strand break repair via break-induced replication [IMP]
- nuclear DNA replication [IMP]
- pre-replicative complex assembly involved in nuclear cell cycle DNA replication [IDA, IPI]
Gene Ontology Molecular Function- ATP-dependent 3'-5' DNA helicase activity [IDA]
- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent four-way junction helicase activity [IDA]
- DNA helicase activity [IDA]
- DNA replication origin binding [IDA]
- single-stranded DNA binding [IMP]
- single-stranded DNA-dependent ATP-dependent DNA helicase activity [IDA]
- single-stranded DNA-dependent ATPase activity [IDA]
- ATP-dependent 3'-5' DNA helicase activity [IDA]
- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent four-way junction helicase activity [IDA]
- DNA helicase activity [IDA]
- DNA replication origin binding [IDA]
- single-stranded DNA binding [IMP]
- single-stranded DNA-dependent ATP-dependent DNA helicase activity [IDA]
- single-stranded DNA-dependent ATPase activity [IDA]
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MCM4 DBF4 | Co-crystal Structure Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex. | Low | - | BioGRID | 3382918 | |
MCM4 DBF4 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2198755 | |
MCM4 DBF4 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 299981 |
Curated By
- BioGRID