ATP1A1
Gene Ontology Biological Process
- cardiac muscle contraction [TAS]
- cell communication by electrical coupling involved in cardiac conduction [TAS]
- cellular potassium ion homeostasis [IDA]
- cellular response to steroid hormone stimulus [IDA]
- cellular sodium ion homeostasis [IDA]
- ion transmembrane transport [TAS]
- membrane repolarization [IDA]
- membrane repolarization during cardiac muscle cell action potential [IC]
- potassium ion import [IDA]
- regulation of sodium ion transport [ISS]
- relaxation of cardiac muscle [TAS]
- response to glycoside [IDA]
- sodium ion export from cell [IDA]
- transmembrane transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CLTC
Gene Ontology Biological Process
- antigen processing and presentation of exogenous peptide antigen via MHC class II [TAS]
- intracellular protein transport [NAS]
- membrane organization [TAS]
- mitotic nuclear division [IMP]
- negative regulation of hyaluronan biosynthetic process [IDA, IMP]
- negative regulation of protein localization to plasma membrane [IMP]
- osteoblast differentiation [IDA]
- post-Golgi vesicle-mediated transport [TAS]
- receptor internalization [IMP]
- receptor-mediated endocytosis [IMP]
- transferrin transport [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- clathrin coat [NAS]
- clathrin complex [IDA]
- clathrin-coated endocytic vesicle membrane [TAS]
- clathrin-coated vesicle [IDA]
- cytoplasm [IDA]
- cytosol [TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- intracellular membrane-bounded organelle [IDA]
- membrane [IDA]
- plasma membrane [TAS]
- protein complex [IDA]
- spindle [IDA]
- trans-Golgi network membrane [TAS]
- vesicle [IDA]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Identification of different proteins binding to Na, K-ATPase ?1 in LPS-induced ARDS cell model by proteomic analysis.
Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid, which is related to inflammatory cell infiltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase ?1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear.Using an unbiased, discovery ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| CLTC ATP1A1 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.4357 | BioGRID | 1259022 |
Curated By
- BioGRID