BAIT

SLA1

cytoskeletal protein-binding protein SLA1, L000001912, YBL007C
Cytoskeletal protein binding protein; required for assembly of the cortical actin cytoskeleton; interacts with proteins regulating actin dynamics and proteins required for endocytosis; found in the nucleus and cell cortex; has 3 SH3 domains
GO Process (4)
GO Function (2)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

CSR2

ART8, MRG19, S000007450, YPR030W
Nuclear ubiquitin protein ligase binding protein; may regulate utilization of nonfermentable carbon sources and endocytosis of plasma membrane proteins; overproduction suppresses chs5 spa2 lethality at high temp; ubiquitinated by Rsp5p, deubiquitinated by Ubp2p; CSR2 has a paralog, ECM21, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Publication

Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

Tonikian R, Xin X, Toret CP, Gfeller D, Landgraf C, Panni S, Paoluzi S, Castagnoli L, Currell B, Seshagiri S, Yu H, Winsor B, Vidal M, Gerstein MB, Bader GD, Volkmer R, Cesareni G, Drubin DG, Kim PM, Sidhu SS, Boone C

SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to ... [more]

PLoS Biol. Oct. 01, 2009; 7(10);e1000218 [Pubmed: 19841731]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SLA1 CSR2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1606BioGRID
2077311

Curated By

  • BioGRID