BAIT

RPE1

EPI1, POS18, ribulose-phosphate 3-epimerase RPE1, L000004023, L000002588, YJL121C
D-ribulose-5-phosphate 3-epimerase; catalyzes a reaction in the non-oxidative part of the pentose-phosphate pathway; mutants are sensitive to oxidative stress
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

ZWF1

MET19, POS10, glucose-6-phosphate dehydrogenase, L000002572, YNL241C
Glucose-6-phosphate dehydrogenase (G6PD); catalyzes the first step of the pentose phosphate pathway; involved in adapting to oxidative stress; homolog of the human G6PD which is deficient in patients with hemolytic anemia; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Plasticity of genetic interactions in metabolic networks of yeast.

Harrison R, Papp B, Pal C, Oliver SG, Delneri D

Why are most genes dispensable? The impact of gene deletions may depend on the environment (plasticity), the presence of compensatory mechanisms (mutational robustness), or both. Here, we analyze the interaction between these two forces by exploring the condition-dependence of synthetic genetic interactions that define redundant functions and alternative pathways. We performed systems-level flux balance analysis of the yeast (Saccharomyces cerevisiae) ... [more]

Proc. Natl. Acad. Sci. U.S.A. Feb. 13, 2007; 104(7);2307-12 [Pubmed: 17284612]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ZWF1 RPE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7674BioGRID
2172758
ZWF1 RPE1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
514129
RPE1 ZWF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
348085

Curated By

  • BioGRID