BAIT
BRD4
CAP, HUNK1, HUNKI, MCAP
bromodomain containing 4
GO Process (10)
GO Function (4)
GO Component (5)
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- chromatin remodeling [IDA]
- negative regulation of DNA damage checkpoint [IMP]
- positive regulation of G2/M transition of mitotic cell cycle [IMP]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of inflammatory response [IDA]
- regulation of phosphorylation of RNA polymerase II C-terminal domain [IDA]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
TP53BP1
53BP1, p202
tumor protein p53 binding protein 1
GO Process (8)
GO Function (5)
GO Component (4)
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular response to DNA damage stimulus [IDA]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [TAS]
- positive regulation of sequence-specific DNA binding transcription factor activity [IC]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [NAS]
- transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling.
Enzymatic-based proximity labeling approaches based on activated esters or phenoxy radicals have been widely used for mapping subcellular proteome and protein interactors in living cells. However, activated esters are poorly reactive which leads to a wide labeling radius and phenoxy radicals generated by peroxide treatment may disturb redox-sensitive pathways. Herein, we report a photoactivation-dependent proximity labeling (PDPL) method designed by ... [more]
Nat Commun Aug. 20, 2022; 13(1);4906 [Pubmed: 35987950]
Throughput
- High Throughput
Additional Notes
- illumination time of 20 minutes (longest time period)
- photoactivation-dependent proximity labeling (PDPL)
Curated By
- BioGRID