BAIT

DSL1

RNS1, L000004950, YNL258C
Peripheral membrane protein needed for Golgi-to-ER retrograde traffic; mediates Sey1p-independent homotypic ER fusion; forms a complex with Sec39p and Tip20p that interacts with ER SNAREs Sec20p and Use1p; component of the ER target site that interacts with coatomer; interacts with Cin5p; similar to the fly and human ZW10 gene
GO Process (2)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

COP1

RET1, SEC33, SOO1, L000002603, YDL145C
Alpha subunit of COPI vesicle coatomer complex; complex surrounds transport vesicles in the early secretory pathway
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

A link between ER tethering and COP-I vesicle uncoating.

Zink S, Wenzel D, Wurm CA, Schmitt HD

The yeast Dsl1p vesicle tethering complex, comprising the three subunits Dsl1p, Dsl3p, and Tip20p, is stably associated with three endoplasmic reticulum-localized Q-SNAREs and is believed to play a central role in the tethering and fusion of Golgi-derived COP-I transport vesicles. Dsl1p also interacts directly with COP-I subunits. We now show that binding of Dsl1p to COP-I subunits involves binding sites ... [more]

Dev. Cell Sep. 01, 2009; 17(3);403-16 [Pubmed: 19758564]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: viability (APO:0000111)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
COP1 DSL1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3611902
DSL1 COP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
DSL1 COP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
DSL1 COP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.45BioGRID
1372216
DSL1 COP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157989
DSL1 COP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2455509

Curated By

  • BioGRID