RYR2
Gene Ontology Biological Process
- Purkinje myocyte to ventricular cardiac muscle cell signaling [ISS]
- calcium ion transport [IDA]
- calcium ion transport into cytosol [IDA]
- calcium-mediated signaling [ISS]
- calcium-mediated signaling using intracellular calcium source [IDA]
- cardiac muscle contraction [IMP]
- cardiac muscle hypertrophy [ISS]
- cell communication by electrical coupling involved in cardiac conduction [IC]
- cellular calcium ion homeostasis [ISS]
- cellular response to caffeine [IDA, ISS]
- cellular response to epinephrine stimulus [TAS]
- cytosolic calcium ion homeostasis [ISS]
- detection of calcium ion [IDA]
- embryonic heart tube morphogenesis [ISS]
- establishment of protein localization to endoplasmic reticulum [IDA]
- ion transmembrane transport [TAS]
- left ventricular cardiac muscle tissue morphogenesis [ISS]
- positive regulation of calcium-transporting ATPase activity [IDA]
- positive regulation of heart rate [ISS]
- positive regulation of ryanodine-sensitive calcium-release channel activity by adrenergic receptor signaling pathway involved in positive regulation of cardiac muscle contraction [ISS]
- positive regulation of sequestering of calcium ion [IDA]
- positive regulation of the force of heart contraction [IMP]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC, ISS]
- regulation of heart rate [IMP]
- release of sequestered calcium ion into cytosol [IDA, ISS]
- release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IMP, ISS]
- response to caffeine [IDA]
- response to hypoxia [ISS]
- response to muscle stretch [IMP]
- response to redox state [IDA]
- sarcoplasmic reticulum calcium ion transport [TAS]
- transmembrane transport [TAS]
- type B pancreatic cell apoptotic process [IMP]
- ventricular cardiac muscle cell action potential [ISS]
Gene Ontology Molecular Function- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
Gene Ontology Cellular Component
UBE2C
Gene Ontology Biological Process
- activation of anaphase-promoting complex activity [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA, TAS]
- exit from mitosis [IMP]
- free ubiquitin chain polymerization [IDA]
- mitotic cell cycle [TAS]
- mitotic spindle assembly checkpoint [TAS]
- negative regulation of cyclin-dependent protein serine/threonine kinase by cyclin degradation [IDA]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of exit from mitosis [IMP]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein K11-linked ubiquitination [IDA]
- protein K48-linked ubiquitination [IDA]
- protein ubiquitination [IDA]
- regulation of mitotic metaphase/anaphase transition [IBA]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- ubiquitin-dependent protein catabolic process [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
LINC01194 recruits NUMA1 to promote ubiquitination of RYR2 to enhance malignant progression in triple-negative breast cancer.
Long intergenic nonprotein coding RNA 1194 (LINC01194) has been reported as an oncogene in several cancer types, but its expression and potential role in triple-negative breast cancer (TNBC) are still unclear. We found that LINC01194 was significantly highly expressed in TNBC based on The Cancer Genome Atlas (TCGA) database. Data from in vitro experiments and in vivo assays demonstrated that ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| UBE2C RYR2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| RYR2 UBE2C | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID