PARK2
Gene Ontology Biological Process
- adult locomotory behavior [ISS]
- aggresome assembly [IMP]
- cellular protein catabolic process [IMP]
- cellular response to dopamine [TAS]
- cellular response to manganese ion [TAS]
- cellular response to toxic substance [IMP]
- cellular response to unfolded protein [TAS]
- central nervous system development [TAS]
- dopamine metabolic process [TAS]
- mitochondrial fission [ISS]
- mitochondrion degradation [IMP, ISS]
- mitochondrion organization [ISS]
- negative regulation of JNK cascade [ISS]
- negative regulation of actin filament bundle assembly [IDA]
- negative regulation of cell death [IDA]
- negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway [IDA, IMP]
- negative regulation of glucokinase activity [IDA]
- negative regulation of insulin secretion [IDA]
- negative regulation of mitochondrial fusion [ISS]
- negative regulation of neuron apoptotic process [IDA]
- negative regulation of neuron death [IGI]
- negative regulation of oxidative stress-induced cell death [NAS, TAS]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- negative regulation of protein phosphorylation [IDA]
- negative regulation of reactive oxygen species metabolic process [IGI]
- negative regulation of release of cytochrome c from mitochondria [IDA]
- neuron cellular homeostasis [ISS]
- positive regulation of DNA binding [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA, IMP]
- positive regulation of mitochondrial fission [ISS]
- positive regulation of mitochondrial fusion [IMP]
- positive regulation of proteasomal protein catabolic process [IGI]
- positive regulation of protein linear polyubiquitination [IGI]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of tumor necrosis factor-mediated signaling pathway [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K27-linked ubiquitination [TAS]
- protein K29-linked ubiquitination [TAS]
- protein K48-linked ubiquitination [IDA]
- protein K6-linked ubiquitination [TAS]
- protein K63-linked ubiquitination [IDA, TAS]
- protein autoubiquitination [IDA]
- protein monoubiquitination [IDA]
- protein polyubiquitination [IDA]
- protein ubiquitination [IDA, IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IC, IDA, NAS, TAS]
- regulation of autophagy [IDA]
- regulation of cellular response to oxidative stress [ISS]
- regulation of dopamine secretion [TAS]
- regulation of glucose metabolic process [TAS]
- regulation of lipid transport [TAS]
- regulation of mitochondrion degradation [TAS]
- regulation of mitochondrion organization [IDA]
- regulation of reactive oxygen species metabolic process [IMP]
- regulation of synaptic vesicle transport [NAS]
- response to endoplasmic reticulum stress [IMP]
- response to oxidative stress [ISS]
- zinc ion homeostasis [ISS]
Gene Ontology Molecular Function- F-box domain binding [IPI]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IPI]
- PDZ domain binding [IPI]
- SH3 domain binding [TAS]
- actin binding [IPI]
- chaperone binding [IPI]
- cullin family protein binding [IDA]
- heat shock protein binding [IPI]
- histone deacetylase binding [IPI]
- identical protein binding [IPI]
- kinase binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- tubulin binding [IPI]
- ubiquitin binding [IDA]
- ubiquitin conjugating enzyme binding [IPI]
- ubiquitin protein ligase activity [IDA, NAS]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA]
- ubiquitin-specific protease binding [IPI]
- zinc ion binding [TAS]
- F-box domain binding [IPI]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IPI]
- PDZ domain binding [IPI]
- SH3 domain binding [TAS]
- actin binding [IPI]
- chaperone binding [IPI]
- cullin family protein binding [IDA]
- heat shock protein binding [IPI]
- histone deacetylase binding [IPI]
- identical protein binding [IPI]
- kinase binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- tubulin binding [IPI]
- ubiquitin binding [IDA]
- ubiquitin conjugating enzyme binding [IPI]
- ubiquitin protein ligase activity [IDA, NAS]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA]
- ubiquitin-specific protease binding [IPI]
- zinc ion binding [TAS]
Gene Ontology Cellular Component
GPHN
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy.
Parkin, an E3 ubiquitin ligase, plays a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Accumulating evidence suggests that the acetylation modification of the key mitophagy machinery influences mitophagy level, but the underlying mechanism is poorly understood. Here, our study demonstrated that inhibition of histone deacetylase (HDAC) by treatment of HDACis activates mitophagy through mediating Parkin acetylation, ... [more]
Throughput
- High Throughput
Additional Notes
- Affinity capture MS was carried out to identify high confidence protein-protein interactors of PARK2 under SAHA treatment.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PARK2 GPHN | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
PARK2 GPHN | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 3458486 |
Curated By
- BioGRID