BAIT

TDH1

GLD3, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) TDH1, GAPDH, L000002272, YJL052W
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides secreted by S. cerevisiae are active against a wide variety of wine-related yeasts and bateria
GO Process (2)
GO Function (1)
GO Component (5)
Saccharomyces cerevisiae (S288c)
PREY

TDH2

GLD2, glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) TDH2, GAPDH, L000002273, YJR009C
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 2; involved in glycolysis and gluconeogenesis; tetramer that catalyzes reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in cytoplasm and cell wall; protein abundance increases in response to DNA replication stress; GAPDH-derived antimicrobial peptides are active against a wide variety of wine-related yeasts and bateria; TDH2 has a paralog, TDH3, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Multiple knockout analysis of genetic robustness in the yeast metabolic network.

Deutscher D, Meilijson I, Kupiec M, Ruppin E

Genetic robustness characterizes the constancy of the phenotype in face of heritable perturbations. Previous investigations have used comprehensive single and double gene knockouts to study gene essentiality and pairwise gene interactions in the yeast Saccharomyces cerevisiae. Here we conduct an in silico multiple knockout investigation of a flux balance analysis model of the yeast's metabolic network. Cataloging gene sets that ... [more]

Nat. Genet. Sep. 01, 2006; 38(9);993-8 [Pubmed: 16941010]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • TDH1/TDH2/TDH3 mutants are synthetic lethal in minimal media
  • TDH1/TDH2/TDH3 triple mutant is synthetic lethal in synthetic rich media
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TDH2 TDH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
TDH1 TDH2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High10BioGRID
3615212
TDH1 TDH2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2660146
TDH1 TDH2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
511012

Curated By

  • BioGRID