RPD3
Gene Ontology Biological Process
- chromatin organization involved in regulation of transcription [IMP]
- histone H3 deacetylation [IMP]
- histone H4 deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IDA, IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IGI, IMP, IPI]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- protein localization to nucleolar rDNA repeats [IMP]
- regulation of DNA-dependent DNA replication initiation [IGI, IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI, IPI]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- replicative cell aging [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
LTE1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin.
In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPD3 LTE1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7384 | BioGRID | 407175 | |
RPD3 LTE1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7437 | BioGRID | 2176052 | |
RPD3 LTE1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 285374 | |
LTE1 RPD3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 257174 |
Curated By
- BioGRID